#### Detecting topological features in real space and time

#### Pietro Massignan











The Institute of Photonic

**Sciences** 

CIRM (Marseille) - 21/01/2020

### Condensed matter



Plenty of emergent phenomena! But we need to *quantify* these... E.g., how to "detect topology"?



# Outline

- Topology in condensed matter
- One-dimensional chiral models
- Quantum Simulation:
  - Topological Anderson Insulator
  - ✦ Interacting fermionic chains





- Quantum Walks ↔ periodically-driven systems:
  - Chiral insulators in 1D QWs
  - Chern insulators in 2D QWs



# Topology

 Classification of objects and manifolds under continuous deformations

✓ stretch and bend✗ but don't cut, puncture, or glue

- *Global* properties!
- Genus (# of holes)
- Winding number of a closed path (# of times it encircles a given object)





# Hall effect

- Classical Hall effect (1879): when current flows in a 2D material, in presence of an out-of-plane B field, there appears a transverse (Hall) current
- Quantum Hall effect (1980): at low temperatures and high-B, the Hall current is quantized!





- Laughlin (1982): robustness due to topology
- TKNN (1982): Kubo formula links conductivity to *Chern numbers* (topological invariants defined on the occupied bands).

Thouless, Kohmoto, Nightingale & den Nijs Phys. Rev. Lett. (1982)

### Hofstadter butterfly

A very simple problem hosting a *fractal* spectrum with topological meaning



# **Topological insulators**

- Insulators in the bulk, with few conducting modes on their edges.
- Protected by the band topology vs. local perturbations, like *disorder* and *defects*.
- Bulk/edge correspondence: edge modes intimately related to topological invariants.

chira

- Enormous progresses in the last 20 years (QSH, 3D TIs., 4D QH, ...)
- Characterization of non-interacting TIs in terms of <u>discrete symmetries</u>
  T: time-reversal
  C: charge-conjugation
  S: chiral
  IQHE, Hofstadter, Chern insulators

 Beyond the periodic table: Mott / crystalline / Anderson / Floquet TIs, ... Winding

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

0

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

 $\mathbb{Z}_2$ 

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

 $\mathbb{Z}_2^-$ 

 $2\mathbb{Z}$ 

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

 $\mathbb{Z}_2^2$ 

 $2\mathbb{Z}$ 

0

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

 $\mathbb{Z}_2^{\tilde{2}}$ 

0

 $2\mathbb{Z}$ 

0

0

AI

D

BDI

DIII

AII

CII

С

CI

7

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_{2}$ 

 $\mathbb{Z}_2$ 

0

 $2\mathbb{Z}$ 

0

0

0

 $\mathbb{Z}$ 

0

 $2\mathbb{Z}$ 

0

0

0

 $\mathbb{Z}$ 

 $\mathbb{Z}_2$ 

# 1D chiral systems



polyacetilene [Nobel prize in Chemistry 2000]



ultracold atoms in superlattices [M. Atala *et al.*, Nature Phys. 2013]



[Zeuner *et al.*, PRL 2015]



**Cavity polaritons** [St. Jean *et al.*, Nature Phot. 2017]



 $t-\Delta$   $t+\Delta$   $t-\Delta$   $t+\Delta$   $t-\Delta$   $t-\Delta$   $t+\Delta$   $t-\Delta$   $t+\Delta$   $t-\Delta$ 

ultracold atoms in momentum-lattices [Meier *et al.*, Nature Comm. 2016]



SC qubits in mw-cavities [Flurin *et al.*, PRX 2017]

# SSH model

• Spinless fermions with staggered tunnelings:

Su, Schrieffer & Heeger Phys. Rev. Lett. (1979)

Asbóth, Oroszlány, & Pályi Lecture Notes in Physics (2016)

- ∃ two sublattices ∃ a "canonical basis" where *H* is purely off-diag:  $H = \begin{pmatrix} 0 & h^{\dagger} \\ h & 0 \end{pmatrix}$
- Chiral symmetry:  $\Gamma H \Gamma = -H$  ( $\Gamma$ : unitary, Hermitian, local)  $\Gamma = \sigma_z$
- In momentum space:  $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$  with  $\mathbf{n}_k \perp \hat{\mathbf{z}}$   $\forall k$
- Winding:





- Bulk-edge correspondence: open-ended chains have  $2\mathcal{W}$  edge modes

# The winding W

•  $\ensuremath{\mathcal{W}}$  may be calculated:

$$H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$$

• from n: 
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} (\mathbf{n} \times \partial_k \mathbf{n})_z = \oint \frac{\mathrm{d}k}{2\pi} \partial_k \phi$$

• from the *eigenstates*: 
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{\pi} \mathcal{S}, \qquad \qquad \mathcal{S} = i \langle \psi_+ | \partial_k \psi_- \rangle$$

skew polarization

What if the Hamiltonian is not known?
 Can one *measure* the winding?

Yes, and it's simple!

### Evolution in real time

Initial condition
 localized on the m=0 cell:



• Mean Chiral Displacement:  $C(t) \equiv 2\langle \widehat{\Gamma m}(t) \rangle = 2 \left| \langle m_A(t) \rangle - \langle m_B(t) \rangle \right|$ 

$$\mathcal{C}(t) = \oint \frac{\mathrm{d}k}{2\pi} \langle \psi(t) | 2\sigma_z(i\partial_k) | \psi(t) \rangle = \mathcal{W} - \oint \frac{\mathrm{d}k}{2\pi} \cos(2\epsilon_k t) \partial_k \phi \xrightarrow{t \to \infty} \mathcal{W}$$

- Bulk measurement
- Fast convergence to  $\ensuremath{\mathcal{W}}$
- Signals topological transitions!



Cardano, D'Errico, Dauphin, ... Marrucci, Lewenstein & PM Nature Comm. (2017)

# Adding disorder to a topological insulator



disorder strength

Meier, An, Dauphin, Maffei, PM, Taylor and Gadway, Science (2018)

### Atomic wires

• Atomic, non-interacting BEC

· Laser-driven coupling of discrete-momentum states

• 1D Hubbard model with built-in chiral symmetry:

$$H_{\text{eff}} \approx \sum_{j} t_j (e^{i\varphi_j} |\tilde{\psi}_{j+1}\rangle \langle \tilde{\psi}_j | + \text{h.c.})$$

• Full control on each tunneling's strength and phase







# Detecting topology

A topological wire becomes trivial by adding disorder



disorder strength

color map: real-space computation of the winding

red line: critical boundary (diverging localization length)

#### **Topological Anderson transition**

A trivial wire is driven into the topological phase by adding disorder



disorder strength



### Interacting fermionic chains



# Half-filled Fermi sea $(U_{\perp}=U_{\parallel}=0)$

#### The MCD equals the winding straight away (no oscillations!)

[Haller, PM and Rizzi, on the arXiv very soon]

### Interacting fermionic chains



Peierls-Hubbard model:  $U_{\perp}$  only ( $U_{\parallel}=0$ )



#### Interacting fermionic chains







# Photonic quantum walks





1D

2D

Cardano, D'Errico, ..., and PM, Nature Comm. 2017 D'Errico, Di Colandrea, PM, ..., and Cardano, arXiv 2020

> see Francesco's poster this afternoon, and Alessio's talk on Thursday morning

quasi-periodicity of the energy spectrum leads to two inequivalent invariants  $\longleftrightarrow$  edge states

D'Errico, Cardano, Esposito, ..., PM et al., Optica 2020

see earlier talk by Filippo



### Collaborators



#### Theory

#### **Experiments**



Maria Maffei

H Institut de Ciències Fotòniques



JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Universität zu Köln

AARHUS UNIVERSITY



Andreas Haller

#### atomic wires







Fangzhao An

#### **PHYSICS ILLINOIS** Τ



**Hughes Taylor** 







Alessio D'Errico

Filippo Cardano





Francesco di Colandrea

Chiara Esposito

#### SLAM group



Lorenzo Marrucci







Nathan Goldman



Arturo Camacho-Guardian

Georg Bruun

Matteo Rizzi



Eric J. Meier

Bryce Gadway



#### Conclusions

- The *mean chiral displacement* is a topological marker capturing the winding of chiral systems (static, periodically driven, disordered, and interacting)
- Experimental observation of a topological Anderson transition
- Detect topology & symmetry-breaking in interacting fermionic chains
- Characterization of a **periodically-driven chiral model** (two independent invariants  $\leftrightarrow$  two kinds of edge states)
- Dynamical observables for other topological classes?

Floquet chiral models:Nature CommMCD theory:New J. Phys.Topo. Anderson Insulator:Science 2018Topological polarons:Phys. Rev. BQuenched QWs:arXiv Jan 202Interacting chains:to be posted of

Nature Comm. 2017 New J. Phys. 2018 Science 2018 Phys. Rev. B (Rapid Comm.) 2019 arXiv Jan 2020 to be posted on arXiv very soon



#### Resistance to disorder



the MCD stays locked to the topological invariant as long as  $\Delta{<}\Delta_{\rm gap}$ 

# Higher windings

• Extension to long-ranged models:





 At critical boundaries: MCD converges to the mean of the winding in the neighboring phases

> Maffei, Dauphin, Cardano, Lewenstein & PM New J. Phys. 2018

### Experimental proposal



- tilted optical lattice blocks tunneling
- inter-cell tunneling J' restored by two-photon transitions
- intra-cell tunneling implemented by RF transitions